Symbolic Synthesis of a Class of Discrete-event Controllers for Process Systems

A. Sanchez*, J. Reza, J. Douriet and R. E. Gonzalez

Depto. de Ingeniería Eléctrica y Computación
Centro de Investigacion y Estudios Avanzados (Cinvestav)
Apdo. Postal 31-438, Guadalajara 45091, Jalisco, México

Abstract
This paper presents a predicate-based symbolic synthesis framework for discrete-event controllers forcing at most one control action in each stage of the control pattern. Binary Decision Diagrams (BDD)-encoded algorithms carry out the calculations required to synthesize a controller of this nature. Numeric experiments show a better performance than other known algorithms. Controllers for systems with state spaces of up to 2.9×10^6 were synthesized in a standard PC without using decomposition or modularization. The synthesis tools are available from www.gdl.cinvestav.mx/sspc.

Keywords: Discrete-event systems, controller synthesis, forced actions

*Corresponding author. e-mail address: arturo@gdl.cinvestav.mx